فحص وصيانة بعض البريديات المحفوظة
بالمتحف المصري - القاهرة
د. عبد اللطيف حسن أفندي

1- مقدمة

عند دراسة البريديات المعروضة في قاعات المتحف المصري أو المعروضة على حوائط سلامة المتحف، وجد أنها في حاجة ضرورية إلى إعادة الحفظ والصيانة وإيجاد طرق وحلول لفق أسباب التلف. وكذلك عند دراسة حالة البريدات المحفوظة داخل مخازن المتحف المصري، وجد أنها محفوظة بطرق غير ملائمة للحفظ، معظمها محفوظ داخل أطراف ورقية أو كرتون على الحمولة، أو صناديق خشبية أو معدنية، أو ورق جرائد منذ استخراجها من الحفائر، مما جعل حالة تلك البريديات غير مستقرة.

وفي حالة تستدعي التدخل السريع لحفظ هذا التراث الثمين.

وإذا تناول البحث تقييم حالة البرديات المعروضة وحفظها، واصدارها بالمحفوظة بالمتحف المصري، والأسباب التي أدت لتلفها وتدوير حالاتها.

كما أشتمل البحث على فحص وصيانة ترميم بعض البريديات المعروضة والمحفوظة في الحجرة 29 بالمتحف المصري وإعادة عرضها أو تخزينها.

2- الهدف من البحث

يهدف البحث لتقديم حالة البرديات المعروضة أو المحفوظة بالمتحف المصري، والأسباب التي أدت لتلفها وتدوير حالاتها. من خلال فحص وصيانة ترميم البريدات، واحتفظ في الحجرة 29 بالمتحف المصري، المحفوظة في الحجرة 29 بالمتحف المصري، وإعادة عرضها أو تخزينها. مع فحص وتحليل عيوب من تلك البريديات باستخدام الميكروسكوب الإلكتروني الماسج (EDX) الميكروسكوب الإكلتروني الماسج (EDX) الميكروسكوب الماسج، والإمتصاص المستوى، والدرو الإضافية إلى الفحوص الميكروسكوبية والدرو وتحديده أهم الفطرات والحشرات التي تسبب تلك البريديات.

3- تقييم حالة البرديات داخل المتحف المصري وأسباب تلفها: (صور 1-7)

نهوض وفحص معظم البريديات المعروضة والمحفوظة بالمتحف المصري يمكن إيجاد أسباب تلف تلك البريديات فيما يأتي:
دراسات في آثار الوطن العربي

٣-١ التلوث الجوي:
أكثر الملوثات تلفًا على البريّرات داخل المتحف المصري هي الملوثات التي تتقلّب إلى أحماض في وجود الرطوبة مثل حمض الكبريت المتولد عن أكاسيد الكبريت وحمض النتريك المتولد عن أكاسيد النتروجين.
وتنقل الملوثات الجوية من وسط المدينة نتيجة للازدهار المروري والكثافة السكانية العالية ولابد مايكون التلوث بالإضافة إلى مصدر الملوثات الأخرى التي تتنسجها أيّاف البردي وينتج عنها في النهاية تكسور أو تحل بأيّاف البردي.

٣-٢ الحرارة:
الانخفاض الملحوظ في درجة الحرارة يعني حدوث التكثيف (تحول بخار الماء في الهواء إلى قطرات ماء) وتضييق بؤرة التلف وتضخّط على النمو البيولوجي كما أن الارتفاع في درجة الحرارة ينضح من التلف الكيميائي ويفقد المواد اللاصقة خواصها ويودي لضعف وهشة أيّاف البردي مما يقل من تحمله للطي.

٣-٣ نسبة الرطوبة:
ارتفاع نسبة الرطوبة يشجع النمو الفطري والحشرى ورفع المحتوى المائي للميلوز المكون الأساسي للبردي، كما أن انخفاض نسبة الرطوبة يفقد البريّرات مرونتها ومحتواها المائي داخلها مما يجعلها هشة وسهلة الكسر، ونتيجة للتغير في معدلات الارتفاع والانخفاض في المحتوى المائي للبردي فإنه يؤدي للتمدد والانكماش مما يؤدي في النهاية إلى التواء سطح أوراق البردي.
وتؤثر الحرارة والرطوبة عادة لا يمكن تجاهلها داخل المتحف المصري لأنّه من العوامل المؤثرة بشدة على أوراق البردي والتي ينتج عنها ضعف وهشة البريّرات نتيجة التغيير في معدلات الحرارة والرطوبة، وقد تؤدي إلى فقد الأحجار الموجودة على سطح أوراق البردي.

٣-٤ الأضرار:
توجد برريّات بالمحافظ المصري مصابة بالأملاح والتي تظهر في صورة مادة رمادية اللون داخل الغطاء الزجاجي حول حواف بعض البرريّات وتفتتالأملاح وجد أنها عبارة عن مركب يتضمن أملاح الصوديوم.

٣-٥ أسباب الضرر المتبعة داخل المتحف المصري:
يُعرض البردي على الحواجز الجانبيّة في الدور الأول في الحجرة رقم ٢٤، وغالبا ما يلصق البردي على خلفية القماش الورقي والمُلصق أيضا على طبقة من الكنانة.

دراسات في آثار الوطن العربي

وغالبًا ما تعرض البرديات داخل المتحف داخل إطارات خشبية مغطاة بألواح زجاجية من الأمام ومن الخلف، وهذه الظروف ضارة جداً بالبرديات لأن الألواح الزجاجية المغطاة للبرديات لم تكن عازلة تماماً للبرديات أو واقية من مظهر التلف المختلف.

وترتفض تلك القطع ببعضها بشريط لاصق وتمرور الوقت يتم إزالة أو تلف الشريط اللاصق بين الألواح الزجاجية مما ينتج عن ذلك فتحات وممرات للتلوث الجوي والأتربة والغبار والرطوبة والحشرات وتؤدي في النهاية إلى تغيير لونى لسطح البردية، وبعض البرديات أصبحت بالتف البيريولوجي والحشري خاصاً الحشرات التي تتغذى على المواد الاصفرة نفسها، بالإضافة إلى أن بعض البرديات معرضة على الجدار الجانبي للسلم رقم 27 حيث توجد دورات المياه الخاصة بالمتحف.

3-1 أساليب الحفظ السليمة للبرديات داخل المخازن:

أغلب البرديات محفوظة داخل أطرف ورقية أو ورق جرائد أو كرتون عالي الجودة، أو محفظة داخل صناديق خشبية أو معدنية. كما أن هناك كمية كبيرة من البرديات محفوظة داخل قطعتين من الزجاج السيء مع لصق لوجي الزجاج لاصق ورق أو بلاستيكي يغطي جميع جوانب اللوحين الزجاجيين مما يساعد على عملية الأكيدة لتلك البرديات ونتج عنها في الغالب بتهان للأحبار، كما وجدت بعض البرديات ملصقة على حامل كرتوني مع تسوية الحامل الكرتوني بنفس القلوب والتحتيمات الموجودة في البردية.

وبعض البرديات تم تجميعها بطريقة خاطئة باستخدام سوليبيت لاصق لتشطيب لاصق بلاستيكي. ببعضها والجوانب جميعها مغطاة بشريط لاصق بلاستيكي.
دراسات في آثار الوطن العربي

صورة (1) تلف نتاج عن استخدام الملوثات على البريدية رقم (2364/1974) متحف مصر.

صورة (2) بريدات مثبتة على حمولات كربونية يظهر بها تأثير الحموضة الشديدة.

صورة (3) تلف نتاج عن الفطريات في شكل بقع لونية.

صورة (4) أفتقا وتقوب نتاج عن تلف الحشرات - بريد فرعوني - مخازن المتحف المصري (X31).

صورة (5) يقع بنية في أماكن الانفصال بين الألواح الزجاجية على بريدات محفوظة داخل سوائل (ورقية - معينية) مخازن المتحف.

صورة (6) البردية رقم 1974/1025 متحف مصر تظهر بها الترميم الخاطئ باستخدام شريط لاصقة، كما أنه ليس حموضة شديدة.
دراسات في آثار الوطن العربي

4- فحص وترميم بعض البرديات المحفوظة والمعروضة بالمتحف المصري-حِجرة ٢٩

(60) المعروضين بالحجرة

أولا: الوصف والتسجيل الأثري للبرديات (صور ٨-١٤)

- البردية رقم (٥٦١) (SR) ٦٧١٥١

الأبعاد: ٢٠٥٠١٣٠ سم، مثبتة على حامل كارتوتي أزرق اللون من جزئي،

البردية مكتوبة باللغة اليونانية القديمة، البردية ممزقة في أماكن اتصال الكرتون،
ومضابة بالحماصة نتيجة الكرتون السفلى المحتوى على نسبة عالية من اللحنين،
وتوجد مظاهر إصابات فطرية وحشرية خلف البداردة في صورة بقع وحشرة،

بطاقة التعرف الخاصة بالبردية تم وضعها بصورة سهية على الكتبات مما أدى

لإخفاء أجزاء من السطور السفلى تحتها.

ب- البردية رقم (٥٦٠) (SR)٥٦٠

الأبعاد: ٣٠٥٠١٢٩ سم، محفظة بين لوحين زجاجيين، عبارة عن عقد بين سيرانوس

ورثة فيلاقيوس اليونان- اليونان، مكتوبة باللغة اليونانية القديمة بها، ٤٩ سطر من

الوجه، و٣ أسطر من الخلف، ترجع إلى حوالى القرن الأعشر قبل الميلاد، بظهور

البردية مظاهرة جاف وهشاشة الألياف كما أن بها تدمير قديم باستعمال لاصق

بلاستيكي أسود اللون لتمجييع البردية، ويظهر بالبردية مظاهرة تلف حشرية وفطرية في

شكل تقوب ورفع. ويمكن إجمال مظاهرة تلف البرديتين فيما يأتي:

- الحماصة العالية للبرديات: الناتجة عن الملوثات المختلفة مثل غاز ثاني أكسيد

الكربون أو غاز ثاني أكسيد الكبريت وغاز ثاني أكسيد النتروجين والتي تتحول إلى

أحماض مثل حمض النترات الذي يؤدي لإضعاف الألوان والأحجار وضعف

خصائص البردي الميكانيكية وتصبح هشة سهل الكسر عند تناوله أو انتقال تلك

الحماصة من الخلفات الكرتونية والملاصقة لها عن طريق حيرة الحماصة

(560). (SR). (Migration of Acidity)

- التلف الحشرى والبيولوجي:

ويظهر ذلك في البرديتين في صورة تقوب وقطع ولسما في البردية (560)، ووجود بعض الأضرار نتيجة تنشيط بعض الحشرات وتغذيتها على

البردي، مناطق بها آثار فرض أو قنوات لما تقوم به الحشرات بإجراء فمها

القاضي (١)، كما وجدت بقايا حشرات تسبب تبقع لسطح البداردة وتلف الأحجار

(2) Leach, B.: Papyrus Conservation at The British Museum, Papyrologica. Lupiensia 3,
Concedo Editore, 1994, P. 137.
دراسات في آثار الوطن العربي 8

والواقعي، ومن تلك الحشرات التي أمكن رؤيتها بالعين المجردة السمك الفضيّة وهي حشرة صغيرة مستطيلة الشكل بنية أو رمادية اللون والتي Silver Fish Book Louse تصنع فجوات وقتم وتتلف الأجاب، والرسوم. وكذلك قبل الكتب وهي حشرة صفراء باهتة ذات أجناس رقيقة تتغذى على الكرتون أو على القطريات التي تكون على البردي، وقد عثر على حشرات حية وميتة داخل الإطار الخشبي للبرديتين بعد الفتح كما وجدت بيوضات حشرية في الزوايا الخشبية بالفحص تبين أنها كثيرة ليس صور الفلم.

- الترميم الخاطئ سابقاً:

استخدام شريط لاصق بلاستيكي سيئ (سولنتيب) لتجميع بعض الأجزاء في البردية كما يظهر من الصور وفي البردية رقم 510 رقم SR العاصمة فوق الكاتبات أسفل البردية ونتج عن ذلك لون بنى غامق فوق الكاتبات.

ثانياً: فتح زجاج البرديتين: (صورة 11-1)

وينبغي مراجعة حالة فتح البردية قبل فتح لحوي الزجاج للتأكد من أن البردية غير ملتصقة بالحوي الزجاج، لأن بعض البرديات قد تبدو أكثر صلابة مما هي عليه في الحقيقة، لذلك يجب الحرص الشديد عند فتح الزجاج القديم، ثم إزالة الشريط لاصق من حول الزجاج القديم وإخراج البرديتين.

صورة (4) البرديتان أثناء فكهما

عإددهما للترميم والصيانة

صورة (8) البرديتان رقم 560 & 561
المعروضتين بالحجرة 29 - متحف مصرى
صورة (11) البردية ٥٦٠ أثناء افتتاح الزجاج SR

صورة (14) البردية ٥١٠ تجميع خاطئ باستخدام لاصق بلاستيكي

صورة (13) لمساكن الأفصال في البريدي والحامل الكرتونiji وثبت البردية بلاصق حديث ٢٠٦٨

صورة (١٢) البردية ٥٦١ مثبتة على قطعتين من الكرتون مثبتتين بدبويس
ثالثا: الفحوصات والتحاليل الميدانية:

- الكشف عن نوع الحبوب: يبلغ جزء من أحد حرف الكتابة في مكان غير واضح
بمحلول مختزن من حمض الخليك 1% وتركيز قليل ثم يشرب الناتج بورق نشاف
ويضاف إليه نقطة من جديد وبيتينيد البوتاسيوم 0.1% للاستعمال بورسا دليل
على أنه حبر كروبيني خامل كيميائي في البرديتين.

- اختبار حساسية الحبوب للمحايدة المائية والمذنبات العضوية: وضع قطرة من الماء
أو من المحلول المعاد اختبار تأثيره على طرف فرشاة وبيتل حرف من حرف الكتابة
في مكان غير ظاهر ثم تلتقط هذه القطرة بسرعة باستخدام ورق نشاف وبراجره
اختبار الحساسية وجد أن الحبر يتأثر بشدة بالمحافظ المائية ويمكن إزالتها بالماء، ولكن
الحبوب لا يتأثر بالكحول والمذنبات العضوية، ولذلك كان استخدام
هيدروكسى بروبيل سيليلوز (HPC) (هيديروكسى)
بروبيل سيليلوز (الذي في الكحول أفضل من استخدام
سيليلوز) في الماء.

- اختبار قيمة الحموضة (pH) (الأس الهيدروجيني): وذلك باستخدام الأدلة اللونية
التي تتميز بأنها خاصة في درجة الحموضة أو القلوية وهذه الأدلة تعطي أدلة
تقريرية على درجة الحموضة أو القلوية وكانت بين 4.0 و 4.5.

رابع: الفحوصات والتحاليل:

- الفحص الحشرى والصوتيولوجي للبرديتين: (صور 20-21)

تم العثور على حشرات حبيبة وبيضة داخل الإطار الخشبي للبرديتين بعد الفحص مثل
السمك الضمي، كما وجدت بويضات حشرية في الزوايا الخشبية بالفحص
الميكروسكوبية تبين أنها أكاس بيع صرصور ألماني، ثم تم أخذ مسحات من
البرديتين لإجراء الفحص الميكروسكوبى عليها، وأخذت المسحات من أماكن تتميز
بالتخلل والضغف ووجود بقع عليها لعرضها أهم أنواع الطفيليات السائدة والمحلة
لأوراق البردي داخل المنحف المصري حتى يمكن اختيار الوسائط والمادة التي يمكن
استخدامها في مقاومة تلك الفطريات.

- الأخذات العزلات:

أخذت العزلات من البرديتين قبل الدراسة، وأحيانا كان يتم تقسيم البردية من كل
نائية إلى 4 أقسام وأخذ عزلة من كل قسم، بالإضافة إلى أخذ مسحات من البرديات
أرقام 25368-25367 وعينات مأخوذة من قصاصات متنوعة من
برديات مختلفة من الصندوق رقم 3071، ومسحات من البردية رقم 3049،
ومسحات أخرى من المجموعة المسجلة برقم 3729، وتم العزل باستخدام
مسحات من القطان المعقم والمذنب قليلا بما معقم أيضا والملفوف على سباق خفية
معقمة، وكان يتم وضع المسحات بعد العزل مباشرة في أنبوب معقمة بعد تعريض

-81-
دراسات في آثار الوطن العربي

فوهاتها للهيب أو لضمان التعقيم الكامل لها، وعدم حدوث أي تلوث من الجو المحيط
وتتم نقل المساحات بعد ذلك إلى المعمل حيث تم تتمييزها على البيئة الصناعية وعزلها
وتصنيفها لمعرفة أنواع الفطريات الموجودة على البردة والتي تسببت في تحللها
وبقائها.

- البيئة المستخدمة

(3) PDA

(4) Potato Dextrose Agar (PDA)

(5) تم استخدام بضائه PDA

(6) وكذلك لحفظ المزارع الفطرية لتصنيفها وتتركيب البيئة من المكونات الأتية:

<table>
<thead>
<tr>
<th>Formula (in gl/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potato extract</td>
</tr>
<tr>
<td>Glucose</td>
</tr>
<tr>
<td>Agar</td>
</tr>
<tr>
<td>pH</td>
</tr>
</tbody>
</table>

- عزل وتقبيلة الفطريات:

(1) يتم صب البيئة السابق تحضيرها في أطباق بترية معقمة ثم لقحت هذه الأطباق
(2) بالعسلات المختلفة تحت ظروف معقمة، حيث تم عمل ثلاث مكررات لكل عسلة، وبعد
(3) ذلك تم تحضير هذه الأطباق عند 28 - 30 0C لمدة 7-10 أيام. وبعد فترة التحضير
(4) يتم فحص الأطباق وحصر المستعمات الفطرية الموجودة بها، ثم تم فصل وتقبيلة هذه
(5) المستعمات في أطباق أخرى تحتوي على نفس البيئة، وبعد الحصول على مستعمات
(6) أو مزارع نقية تماما تم عمل مزارع مكررة لكل فطر في أنابيب معقمة ومحتوية على
(7) نفس البيئة لاستخدامها في التصنيف والتصوير.

- تصنيف الفطريات المعزولة:

(1) يتم عزل مزارع فطرية نقية من العسلات التي أخذت من البردبان أو العينات البردية
(2) المأخوذة، وتتم دراسة لون وشكل هذه المزارع وفحصها بالعين المجهرية ثم فحصها
(3) ميكروسكوبيا لتحديد نوع الميسيليوم، وشكل الحوامل الجروأنوية وتم التصنيف لهذه

دراسات في آثار الوطن العربي

tلتعني أن مزارع الفطريات المعزولة من البرديتين التي تم أخذ العزلات منها كانت Aspergillus، Cladosporium fulvum
بعد التنبات مزارع تتبث الفطريات الناتجة، وتعتبر هذه الفطريات من Fusarium Sp. وأخرى تتبث Penicillium Sp. niger
الفطريات التي تسبب المخطوطة بصفة عامة.(3)

صورة (16) [X400] Penicillium Sp.
صورة (15) [X400] Cladosporium fulvum link
صورة (18) [X400] Stemphylium Sp.
صورة (17) Fusarium Sp.
صورة (20) Silver Fish
صورة (19) صورىر ألماتي

دراسات في آثار الوطن العربي

ب- التحليل باستخدام الميكروسكوب الإلكتروني المحسّن SEM (EDX) Microscope

لعينات من البرديتين: (صور ٢١-٢٥)

حيث تم أخذ عينات صغيرة غير مؤثرة من البرديات وعمل شرائح ميكروسكوبية
لها للتعرف على شكل الخلايا في المناطق المختلفة.

تحليل عينات بردى فرعوني (متحف مصري)

صورة (٢٢) بردى حديث
(عينة مقارنة) (SEM X500)

صورة (٢٣) بردى فرعوني
(SEM X1000)

صورة (٢٤) بردى فرعوني
(SEM X1500)

ويظهر من الصور السابقة مدى تكسّر وتهتك جدر الخلايا في البردى الفرعوني
مقارنة بخلايا البردى الحديث نتيجة لتقلّم الزمني.

تحليل (SEM EDX)

على عينات بردى يوناني روماني (متحف مصري)

صورة (٢٥) بردى يوناني روماني (SEM X1000)

صورة (٢٦) بردى يوناني روماني (SEM X35)

ويظهر أن التقادم الزمني على الخلايا

ويظهر من الصور السابقة مدى تكسّر وتهتك جدر الخلايا في البردى اليوناني
الرومانى بصورة تكاد تكون أعلى من البردى الفرعوني نتيجة لتقلّم الزمني.
الرسوم البيانية السابق تتضح المقارنة بين تحليل العناصر لعينات بردى من العصر الفرعوني والعصر اليوناني، مبينة في جدول رقم (1). نتائج الدراسة:

- البردي الفرعوني بنسب عالية من الحديد (4.8% الكرب) والفسفور (1.8%)
- والتينانيوم (9.1%)
- البردي اليوناني الروماني بنسب عالية من الكلور (1.7%)
- والبوتاسيوم (19.8%)
- والماغنسيوم (4.2%) والصوديوم (1.3%)
- ونسبة عالية من السيليكا (9.8%)

- تحليل البردى بطرقية الامتصاص الذري:

تم تحليل عينات من البردى بعضها حديث وبعضها يرجع للعصر الفرعوني باستخدام الامتصاص الذري (1) وتظهر نتائج التحليل في الجدول (2):

<table>
<thead>
<tr>
<th>Sample</th>
<th>Fe%</th>
<th>Na%</th>
<th>Ca%</th>
<th>Mg%</th>
<th>Si%</th>
<th>Al%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent Papyrus (new)</td>
<td>0.018</td>
<td>0.174</td>
<td>0.671</td>
<td>0.074</td>
<td>0.151</td>
<td>0.125</td>
</tr>
<tr>
<td>Pharaonic Papyrus (old)</td>
<td>0.052</td>
<td>4.224</td>
<td>1.180</td>
<td>0.128</td>
<td>0.107</td>
<td>0.131</td>
</tr>
</tbody>
</table>

ويفضح من الجدول انتشار عنصر الصوديوم بنسبة عالية في البردى الفرعوني، وربما يرجع ذلك إلى أملاح التربة التي وجد فيها، وباقي العناصر أظهرت نسب ضئيلة جدا. ويمكن تحليل ذلك أن تلك العينات قد تعرضت لعملية تنظيف سابقة.

- التحليل الغنائي (C, H, O) لأدال حديث وبردى فرعوني:

قام عام 1983 Wiedemann ونماذج الكنوز لبردى قديم (1300 ق.م) وبردى حديث (1977) (11)، وعند تحليل عينات من البردى بعضها حديث وبعضها

(10) تم إجراء التحليل في مركز التحليل الدقيق، كلية العلوم، جامعة القاهرة.
(11) Wiedemann, H.G: Op - Cit.
دراسة في آثار الوطن العربي

يرجع للعصر الفرعوني باستخدام طريقة C, H, O (11), كانت نتائج التحليل كما في الجدول (3):

<table>
<thead>
<tr>
<th>Sample</th>
<th>C%</th>
<th>H%</th>
<th>N%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharaonic Papyrus (old)</td>
<td>36.9</td>
<td>4.5</td>
<td>Trace</td>
</tr>
<tr>
<td>Recent Papyrus (new)</td>
<td>42.2</td>
<td>4.5</td>
<td>Trace</td>
</tr>
</tbody>
</table>

من نتائج التحليل السابق الذي قام به الباحث كانت النتائج متوافقة مع التحليل الذي قام به Wiedmann (12) وخاصة مع نسب (الكربون، الهيدروجين) إلا أن العينة الفرعونية أظهرت نسبة عالية من الصوديوم. أما العناصر التي وجدت بنسبة قليلة كانت (الحديد، الماغنيسيوم، الألومنيوم، السيليكون) في العينات التي قام بها الباحث بتحليلها ربيما تم إزالتهما بالاماء أثناء عمليات التنظيف.

خاتمة: الصيانة والترميم: (صور 27-30)

أ- التنظيف:

وذلك بوضع كل بردية في بيئة مجهزة لمدة ثلاثة أسابيع مع إحكام الغلق في غابات لاستيكية من البولي إيثيلين في كل منها أكسجين كيميائي متصل ثم إخاله داخل الغطاء، والعمل الأساسي للأكسجين الكيميائي المتصل أنه يقوم بالتفاعل الكيميائي لأكاسيد الحديد النشطة في وجود الأكسجين، وميزة هذه الطريقة أنها خالية من المخاطرة كما أنها تقتل وكفاءة عن طريق نقص الأكسجين أي أثر أو شكل من أشكال الحياة للحشرات واليرقات والبيض (13)، وأحيانا تم التعقيم بوضع البردي بين ورق نشاف متعادل خالي الحموضة ومشرب بـ P.Chloro. M. Cresol.

ب- التنظيف: (صور 27-38)

وذلك بالاستعانة ببيكروسوكب وأحيانا عدة مكبة، وتتم التنظيف الميكانيكي باستخدام فرش ناعمة وأحيانا خشنة لإزالة الأثاثة وحبوب رمل وجراثيم الفطريات

دراسات في آثار الوطن العربي

أو الكائنات الحية الدقيقة، كما استخدم في بعض الأحيان النافث الهوائي مع تكرار التنظيف الميكانيكي حتى الوصول إلى نتائج مرضية.

وفي بعض القصصات تم استخدام التنظيف الكيميائي لإزالة العوائق المتبادلة بين الألياف واستخدام الماء المقطر أو الماء المضخ وحول (1:1) لإزالة هذه الاعتداءات حيث أن الماء يزيد الخواص الميكانيكية للبردي الجاف ويLOSS الروابط الأبدية في المكورة في جزيئات السيلولوز مع إعادة المحتوى الرطبي للبردي الجاف، ثم تترك البرديات لتجف وتوضع بين ورق نشاف جاف يعلو زجاج أو أقفال. وتم تنظيف البرديات وكذلك الخلفية الكارثية من الأتربة والنشاطات.

ج- إزالة الترميمات الخاطئة: (صور 29-31)

مع البردية رقم SR 511 - تم إزالة بطاقة الشرارة القديمة المثبتة بالمغلف على الكتبات أمسال البردية باستخدام خليط من البنيزين + الطولونين + أمونيا مائية (عصار)- وأعطى نتائج جيدة في إزالة الأصلع والاستعمال بموضوع أثناء إزالة البطاقة المشارحة القديمة. أما مع البردية رقم SR 520 - فتم إزالة السوائل المستخدمة من أمكين التجميع القديم باستخدام خليط من (البنيزين + الطولونين + تازي كلورو إيثيلين) حيث تم إزالة الأصلع تماما دون التأثير على ألياف البردي وإزالة بقايا المادة الاصطنعية بالصفي الدافئ ثم التجفيف بين ورق نشاف تدويئة وتجسيم الأجزاء المنفصلة مكان الأصلع باستخدام الورق الياباني واصف هيدروكسي بروبيل سيلولوز (HPC) 1%.

د- إزالة الحموضة:

وجد أن نسبة الحموضة في البرديات بين pH 4-5.0 وذلك باستخدام الدليل الوارد لمعرفة درجة الحموضة لذلك كان من الضروري معالجة الحموضة، وتمت معالجة الحموضة باستخدام محلول هيدروكسيد الباريوم في الكحول (1:1) هيدروكسيد باريوم في نتر من الكحول الإيثيلي النقي (11). وتم المعالجة باستخدام ورق نشاف مشبع هيدروكسيد الباريوم 1% في الكحول ثم وضع البردي بينه فتم التعامل بطريقة غير مباشرة من خلال ورق المعالجة إلى ورق البردي البيني.

ه- فرد الألياف البرديات:

يتم الاستعانة بملقط من الصلب ومعه فرشاة شعر دقيقة مع العمل على ورق ترشيح وإضاءة مناسبة مع الاستعانة بعدسة مكبرة متصلة يحمل حتى تكون الأبدية حرة الحركة أثناء العمل، وباستخدام فرشاة منديلة بقليل من الماء أمكن فرد الألياف وإعادة الألياف إلى أماكنها الأصلية دون أن يصل الماء إلى الجانب الخلفي من البردي. ثم تجفيف البردي الرطب خفأ من الإصابة بالعفن، وذلك بوضع البرديات.

دراسات في آثار الوطن العربي

بين أفرخ من ورق نشاف نظيف ثم توضع بين شريحتين من الزجاج أو كرتون

وباستخدام كبسولات ضاغطة يتم غلق شريحتى الزجاج معا أو وضع نقل خفيف فوقها، وتغير ورق الترشيح من أن إلى آخر طالما أن البردي غير جاف تمامًا، وذلك بهدف تجنب إصابة البردى بالعفن وتعجيل عملية التجفيف.

و- تقنية البردى:

تم تقريب البرديتين باستخدام محلول هيدروكسى بروبيل سيلوز HPC الذائب في الكحول (2%) وذلك برش محلول التقريب في شكل رزاز ثم التجفيف.

- حفظ البرديتين بين لوحين زجاجيين (صور 32-33).

في البداية يتم تحديد الإطار الزجاجي المطلوب للبرديتين مع ترك مساحة لكارت التعريف أو البطاقة الشارحة وترك مساحة 2 سم من كل الجهات مع تعيم أحرف الزجاج وغسله باستخدام لزج بروبيل الكحول لنزع أي شوائب عليه ثم تجهيزه بقطعة كتانية لا تتراك غبارًا على سطحها.

ثم توضع البردي ومسطحها كارت التعريف الجديد الذي تم إعداده من ورق أبيض خالي من الحموضة مع استخدام الحروف المطبوعة الجاهزة وتوضع البردية والبطاقة الشارحة بين لوحين من الزجاج سمك 3 مم - أخذهما من الأمام والأخر من الخلف، وفي الوقت الحالي يمكن الحصول على لوح زجاجي بألوان متعددة قد تصل إلى 3 متر يمكن استخدامها لأطوال البرديات، حيث يتم تنصيب لوحين زجاجيين ويتم لصفهما معًا باستخدام السيليكون معا وإعادة وضعها مرة ثانية على حواف الحجرة.

صورة (27) عمليات التنظيف وإعادة الألياف إلى أماكنها الصحيحة للبردية SR 511

صورة (28) أثناء تسجيل وتنظيم البردية رقم 560

صورة (29) أثناء وبعد نزع وإزالة البطاقة الشارحة القديمة وإظهار الكتابات للبردية 511
صورة (31) أماكن الشريط اللاصق بعد الأزالة من البردية

صورة (32) أثناء إزالة الشريط اللاصق

صورة (33) البردية 561 بعد الترميم بعد الترميم والعرض

صورة (34) البردية 560 بعد الترميم والعرض

لا يوجد نص يمكن قراءته بشكل طبيعي من الصورة.
دراسات في آثار الوطن العربي

4- فحص وصيانة البردية رقم (990) الحجرة 267

المتحف المصري - أبعادها 44 سم , البردية تحيط بها غامق جدا نتيجة الحموضة الشديدة - عند وصف وتسجيل 1 لوح زجاجي داخل دواليب الحجرة 29 بالمتحف

البردية محفوظة داخل نصفي زجاجيين داخل دواليب الحجرة، وقد أخذت تلك الأملاح لون رمادي داخل الغطاء الزجاجي حول حواف البردية، وبتحليل الملح وجذب ملح كيلوريت الصوديوم ربما مصدره التربة التي كان محتويها في فترة طويلة وظهر نتيجة غلق جميع حواف الزجاج ومنع الهواء عند البردية فنتج عنه هرة للألماح على سطح البردية - البردية أيضا بها أماكن تمزقات وقطوع. كما هو موضح في (الصور 37). - الحبر كربوني ثابت إلى حد كبير

درجة الحموضة (Ph) 4-3

ثانيا: العلاج والصيانة:

أ- فتح الزجاج والتنظيف الميكانيكي:

باستخدام الفرش الناعمة والخشنة على حسب حالة الالتشا والإستعانة بمشارف غبار حادة وأحيانا استخدام النافذة الهوائية وفي مرحلة ثانية تم وضع البردية المردة تنظيفها بين ورق نشاف خالى من الحموضة مذنب برزاز الكحول والماء ثم وضعه تحت أغلق حيث يتمتص ورق النشاف الأشواط والألقاب من سطح البردية وتكرار هذه العملية حتى يصبح ورق النشاف أسفل البردية وأعلاها خالى من المتبة تماما. وقد أعطت هذه الطريقة نتائج جيدة وأصبحت البردية نظيفة خالية من الألزاب والتشايات.

ب- إزالة الأملاح:

وتم إزالة بلوانت الأملاح ميكانيكي باستخدام دفعة تم فرشها جافة ناعمة تمرر على السطح وتوضع ورقة البردية بين ورق ترشيح مذنب بالماء ثم توضع بين شريحتين نظيفة للجمع وتحريك لمدة 24 ساعة حيث يساعد ذلك في إزالة الملح.

ج- معالجة الحموضة:

استخدم في معالجة الحموضة محلول هيدروكسيد الباريوم بإذابة 19 جم من هيدروكسيد الباريوم في لتر من الكحول الإيثيلي النقلي، ويتلت المعالجة بالرش ثم تترك لتجذب بين ورق نشاف خالي الحموضة ثم وضعها تحت أغلق حتى الحفاف التام.

د- التقوية :

تم استخدام محلول هيدروكسي بروبيل سليلوز في المذاب في Klucel G. HPC الكحول حيث يعمل ذلك المحول على تقوية السلاسل الطويلة لجزيئات السليولوز وهذه السلاسل تتداخل وكأنها دعامة للبردي. وفي بعض الأمكاني الضعيفة تم تديمها بالورق HPC الياباني وألواح من الزجاج مغطاة بفرخ من الورق. النشاف خالي الحموضة وشرك بمحلول التقوية، وبعد تشريح المحول توضع بين ورقيتين من الأوراق المشبعة ثم وضع البردي بين لوحتين زجاجيين وأوراق نشف يتم استبدالها باستمرار وتضغط باتجاه حتى تمام الجفاف.

وقد تم التقوية والفردق في مرحلة واحدة وباستخدام ملقطة من الصلب له حواف حادة الزوايا ومعه فرشاة شعر دقيقة، والعمل على ورق ترشيح في وجود إضاءة مناسبة وعدسة مكبرة متعلقة بحامل، ويمكن فرد البرديات المكروشة وإعادة الأليف المتافرة إلى أماكنها الأصلية وإعادة لصق الشرايح المتصلبة من المسطح بالاصق HPC وذلك بعد جفاف البردية تماما ومراحة أن يتم فرد تلك المناطق المكروشة بحرص وعناء، ثم تجفيف البرديات خوفا من إصابتها بالعدس ووضعها بين ورق ترشيح نظيف وجاب ووضع أقالل خفيفة فوقها، وتغير تلك الأوراق من وقت لآخر طالما أن البردي غير جاف تماما.

ه- ترميم القطع والتمزقات :

بالاعتماد لاصق هيدروكسي بروبيل سليولوز 6% وورق بابائي سمك 9 جم متاجنس مع لون البردية - ومراعاة إعادة الأليف لأماكنها الصحيحة في الوجه أو الخلف.

و- حفظ البرديات بين لوحين زجاجيين :

وتم حفظ البردية بين لوحين زجاجيين سمك 3 مم - ومراعاة عدم غلق جميع الأركان حتى يكون هناك تهوية للبردية، بنفس التكتيكي السابق الذكر مع البرديات التي سبق ترميمها.

صور (27) SEM X750 (27) وتظهر سلفات وقرنية نتيجة عن التربة.

صور SR 990 المصابية بالأملاح وتم معالجتها وإعادة عرضها مرة أخرى.
دراسات في آثار الوطن العربي

4-2 فحص وصيانة البدرية رقم (615) SR 95685 الحجرة 69

الأول: الوصف والتسمية الأكرونية للبردية

البردية محفوظة داخل نوهجين زجاجيين - الزجاج متكسر إلى ثلاثة أجزاء نتيجة الإهال وأسواء الحفظ داخل الدواليب ونتيجة لتكسر الزجاج حدث قطع وانفصال للبردية في نفس أماكن الكسر في الزجاج. البردية عبارة عن قصاصات منفصلة حوالي 32 قصاصة (قطعة) مختلفة الأحجام - اللوحين الزجاجيين مثبتين بسلم ناتج حديث من جميع الأركان - أجزاء من القصاصات تم تجميعها بطريقة خاطئة وفي غير أماكنها الصحيحة - والبردية في حاجة ضرورية لإعادة الحفظ والصيانة.

ثاني: العلاج والصيانة

أ- فتح الزجاج والتنظيف:

مع الحرص لوجود بعض القصاصات الهشة والضعيفة التي تكون ملتصقة بسطح الزجاج- ثم التنظيف الميكانيكي باستخدام الفرشاة والناشف الهوائي لكل قصاصة كما يجب توضيح ذلك.

ب- فتح التجميع القديم:

بعض الحروف غير واضحة بسبب التجميع الخاطئ وبعد إزالة التجميع القديم باستخدام الماء والكحول وفرد الألياف لبعض القصاصات تم تناسق واكتمال بعض الحروف الهامة في البردية.

ج- تجميع أجزاء البدرية المنفصلة وإعادة حفظها:

ورد جميع الألياف المنفصلة والمتفرقة في القصصات وإعادتها لأماكنها.

Verso: الأصلية سواء كانت أفقية أو رأسية وضع لاصق المركز على الحرف الخارجي للأجزاء المنفصلة وكذلك على الألياف المنفصلة من كل جزء.

تجميع الأجزاء ببعضها ومراعاة التداخل والتركيب بين الألياف المنفصلة وإعادتها لأماكنها الأصلية. تم التجميع أحيانا باستخدام شرائح الورق المصمغ (بالصمن الغربي) حيث تقطع لأجزاء صغيرة جداً ويوضع الشريط اللاصق من الخلف دون وضعها على الكتابة. وأحيانا تم التجميع مع بعض الأجزاء باستخدام هيدروكسي بروبيل سيليلوز كLASTIC والورق البني وبخاصة في الأجزاء الضعيفة من بعض القصاصات بهدف التدعيم والتجميع وترميم تجاس الشكل بين الورق البني ولون البدرية. وضع تلك الأجزاء بين

دراسات في آثار الوطن العربي

ورقتين من النسيج العازل ووضع أقال عليها لمدة ساعة حتى جفاف اللاصق.
بعد المراحل السابقة أصبحت لقصاصات قوية ومتماسكة يمكن التعامل معها.

د- تثبيت وحفظ القصاصات بين لوحين زجاجيين:

- إعداد زجاج سمك 3 مم بهجوم أكبر من حجم الزجاج السابق بحوالي 2 سم من جميع الجوانب. و تنظيف الزجاج بالأغزو برويل الكحول لإزالة أي شوائب أو اتساخات ثم تجفيف بقطعة قطن أو كتان حتى لا تترك غبارا على سطحه.
- تثبيت القصاصات داخل الزجاج القديم باستخدام شرائح الورق المكسعم حيث تقطع لقطع صغيرة جدا وتثبيت أطراف القصاصات مع الزجاج بالاستعانة بفرشاة مغذية بالماء ودغرة معدنية مع مراعاة عدم ترك بصمات أصابع بين اللوحين الزجاجيين أثناء التثبيت للقصاصات.
- غلق الزجاج بعد وضع البطاقة الشارحة بين اللوحين الزجاجيين من أسفل يتم غلق الزجاج باستعمال شريط لاصق كتكي على أحرف الزجاج وترك الأركان مفتوحة وبدون لاصق لتهوية القصاصات.

صورة (38) البدرية رقم 615
ويظهر بها تمزق البدرية بسبب تهشم الزجاج.

صورة (039) البردية رقم 615
ويظهر بها تمزق البردية بسبب تهشم الزجاج

صورة (041) البردية رقم 615 (21 قصاصة بري) أثناء فك الترميم القديم وإعادة التجميع والثبيت بين لوحين زجاجيين

صورة (042) الباحث أثناء غلق الزجاج للبردية رقم 615 بعد إعادة الترميم والثبيت وإعادة الحفظ

صورة (041) البردية رقم 615 بعد إعادة الترميم والثبيت بين لوحين زجاجيين
ينكون القصر من أربعة حجرات تركزت في الأركان القصر الاتفاقها من حجرة الصالون التي تقع في الجهة الجنوبية الشرقية، مستطيلة الشكل، وحجرة الأسماء مثمنة الشكل، وحجرة الباردو مستطيلة الشكل، وحجرة المائدة المثمنة الشكل، ولكي ينشأ التوازن الديني والبديهي والاجتماعي وضع المصمم أشكال الحجرات بحيث تتناسب أشكالها مع مساحتها جداً بحجرة مستطيلة ثم حجرة مثمنة الشكل، وكذا تظهر حجرة الصالون المستطيلة تواجه حجرة الباردو، مستطيلة وحجرة المائدة المثمنة تواجه حجرة الأسماء المثمنة الشكل.

- كم لجذب أمازيا، 000 بحيث كل مدخل يواجهه تراس مربع الشكل يعلوته قبة نصف دائري تحت بناء نصفان قباب، محوّل على أعمدّة رخامية مربعة البند. أما احتمال القصر فإنها استانجية الشكل مشيدة من الرخام الإبيض الذي جلب من إيطاليا، وهو من أفضل وأحسن أنواع الرخام من حيث الخواص الطبيعية والكيميائية والفيزيائية، وقد استخدم هذا النوع من الرخام في تطهيره تحليق مقص 50 سم.

- أما السقف في نفس سبيل جملوني من الخارج من الخشب، أما من الداخل فقد غطيت الأولىين بسفين مستطيل اما التراسات واما الحجرات الأربعة والأبواب (داخل). القصر الأربعة فتتمدّقها قباب رخامية خشبية.

- أداة التراسات الأربعة فانضمت بقباب مستطيلة تحت بحل ولا ثلاثة انصاف قباب كروية من الخشب مزينة ومزخرفة بزخارف نباتية ومانسية وصور ولوحات مستوحاة من الطبيعية، وبورتريه محمد علي باشا الكبير.

حجرة الصالون موضوع البحث:

- تقع حجرة الصالون في الجهة الجنوبية الشرقية (الركن الجنوبي الشرقي للقصر)، وهي على هيئة مستطيل 17 متر × 10,70 متر تتألف من ثلاثة واجهات وهم الواجهة الجنوبية، الواجهة الشرقية، الواحة الشمالية، وتكمن من ثلاثة نوافذ.

- أما الواجهة الغربية فتغطي بها مدخل الحجرة الذي يفتح على الأيوان الجنوبي الذي عرضه 10,20 مترا حيث يقينا هذا المدخل قبة نصف كروية من الخشب، نصف قطرها 1,40 مترا.

وصف الحجرة من الداخل:

الحجرة صممت على هيئة عليا من الخشب للجوز الهندي والأبانوس، جدران وسفاق وارضية نفذت بها الزخارف النباتية بالذهب والحرق والحرق بالسلق جملة زخارف

-198-
دراسات في أثار الوطن العربي

تتألف الأسلاك من كتل حجرية منظمة الشكل 25 × 40 سم بعرض 30 سم محملة على براطيل خشبية وضعت على سطح التربة على هيئة فلكلات قضبان السكة الحديد لتوزيع الاحمال.

الحالة الحجرية:

- من الدراسة الميدانية لموقع الحجرة وجد تصدعات بالمجردين الجنوبي والشرقي في صورة شروخ عميقه Widen cracks & lengthen cracks.
- الحالة في صورة انتفاش ورتبة النار.
- الجدار الجنوبي مقبول للخارج وفصل من الجدار الشرقي من أعلى.

عوامل تليف الحجرة موضوع البحث:

- الهياكل الميكانيكية
- ارتفاع منسوب المياه تحت سطحية Sub soil water
- التلف البيولوجي

التفشل المبكر في الجدران الجنوبي للخارج نتيجة للهبوط بالأرضيات المستخدمة ذات الأشجار بالخشب بالنافورة (fungi consists of brown rot & black rot).

البليتي والعفن الأسود الذي أصاب البراطيل الخشبية التي وضعت أسفل الأسلاك الحجريه على هيئة فلكلات السكة الحديد للعمل على الآتي:

1- وضع سطح مستوي 2 - ارتفاع الأسلاك 3 - توزيع الاحمال على التربة.

ولقد أصبحت لا تؤدي عملها مما أدى إلى حدوث ميل الجدران الجنوبي إلى الخارج.
- ارتفاع نسبة المياه تحت سطحية لارتفاع 0.5 سم وكذلك ارتفاع معدلات الأملاح بالإساسيات والجدران بالخاصية الشعريه.

الأسلاك المستخدمة انشاها عبارة عن أسلاك سطحية foundation.
دراسات في آثار الوطن العربي 8

الهزة الأرضية - Earth movement

والناجية من الاتي:
١- زلزال أكتوبر ١٩٩٢ م والذي وصل نسبة ٥.٩ ريختر وتباعه والذي دمر العديد من أثار القاهرة وأثار المحافظات المجاورة.

٢- حركة المرور الكثيفة بمنطقة شبرا الخيمة مدخل القاهرة الشمالي والمتصل في النقل الفيتن والسرع. وقد قدرت قدرة فرامل تلك السيارات النقل الكثيف بتباع الزلازل والتي تؤثر بصورة مباشرة على المباني القديمة ذات الأساتاذ السطحية والجدران الحاملة.

تلوث الجوي

من الدراسات والتجارب الأمريكيكية تعتبر مدينة القاهرة الكبرى من المدن التي تعلو بها نسبة التلوث الجوي. وأن مدينة شبرا الخيمة الصناعية ترتقي بها نسبة التلوث الجوي نتيجة لعدد أنواع الصناعة والتي ينتج عنها غازات خفيفة مثل أول وثاني أكسيد الكربون، وثاني أكسيد الكربون وتفاعاتهم في الهواء الجوي ومع بخار الماء.

\[
\begin{align*}
SO_3 & \rightarrow SO_2 + \frac{1}{2} O_2 \\
H_2SO_4 & \rightarrow SO_3 + H_2O \\
2 CaSO_4 & \rightarrow 2 H_2SO_4 + CaCO_3 \\
2H_2O + 2CO_2 &
\end{align*}
\]

ما أدلى البحوث نقر في إيجاد أساسات حجرة الصالون والجدران اما الغازات الخفيفة والمنشطة بمنطقة الآ↵ مثل معدن الرصاص والكربون بالإضافة إلى الغناء من مفهوم المصغر وعواصم السيارات.

٣- عامل التلوث

منها التلوث الميكانيكي والكيمائي والذي يسبب تلف وتصدع ونقر في الكتل الحجرية باساسات والمدامل الخمسة الأولى من الجدارين الجنوبي والشرقي.

الفحوص Examination work

١- تم عمل جمل أرضية أغلب الأساتذة لمعرفة الاتي: عمق الأساس - اسلوب تشبيه الأساس ونوعيةه - ارتفاع مسند المياه الأرضية - نوع وتصنيف الربة حتى عمق ٥٠ مترًا عمقة.

٢- اخذت عينات الفحص والدراسة من التربة وأحجار الأساتذة.

استخدم في الفحص الطرق التالية:

٢٠٠٠
年の العربي

1- الميكروسكوب الإلكتروني الماسي

للعница على نوع المعادن وشكل البلورات للمعادن التي تتكون منها عينة الفحص -
ومدى الترابط بين المعادن ومادة الربط بالعينه .

2- استخدام حيود الإشعاع السيني

لدراستا المعادن ومعادن العينة ومدى التماسك أو الانهيار بالعينة والعيرة.

3- دراسة الخواص الطبيعية والمركاكية للعينة في المعهد القومي لبحوث البناء.

The result of analysis and examination

نتائج الفحص والتحليل

جدول (1) يوضح الخواص الطبيعية والمركاكية لعينة حجر جيري من الجدار

الجنوبي لحجرة الصالون .

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Color</th>
<th>Hardness</th>
<th>Lusture</th>
<th>Specific gravity gm/cm³</th>
<th>Thermal expansion</th>
<th>Tensile strength Kg/Cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive strength Kg/cm²</td>
<td>652</td>
<td>14</td>
<td>Yellow</td>
<td>7.3</td>
<td>Glass</td>
<td>8.2</td>
<td>6.2</td>
</tr>
</tbody>
</table>

جدول (2) يوضح نسب العناصر والمركبات التي يتكون منها نسيج الحجر الجيري

X - ray fluorescence & x - ray differraction analysis .

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight %</th>
<th>Compound</th>
<th>Weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>30.13</td>
<td>CaCO3</td>
<td>75.25</td>
</tr>
<tr>
<td>Na</td>
<td>6.77</td>
<td>NaCl</td>
<td>17.20</td>
</tr>
<tr>
<td>Mg</td>
<td>1.42</td>
<td>MgO</td>
<td>2.36</td>
</tr>
<tr>
<td>Al</td>
<td>1.14</td>
<td>Al2O3</td>
<td>2.15</td>
</tr>
<tr>
<td>Si</td>
<td>0.42</td>
<td>Si O 2</td>
<td>0.91</td>
</tr>
<tr>
<td>K</td>
<td>0.35</td>
<td>K2SO4</td>
<td>0.78</td>
</tr>
<tr>
<td>Fe</td>
<td>0.08</td>
<td>Fe2O3</td>
<td>0.11</td>
</tr>
</tbody>
</table>
جدول (3) يوضح نسب تركيب العناصر والمركبات التي تينيز منها نسب العزلة

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight</th>
<th>Compound</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>25.00</td>
<td>SiO2</td>
<td>53.48</td>
</tr>
<tr>
<td>Al</td>
<td>9.19</td>
<td>Al2O3</td>
<td>17.36</td>
</tr>
<tr>
<td>Fe</td>
<td>6.33</td>
<td>Fe2O3</td>
<td>9.05</td>
</tr>
<tr>
<td>Na</td>
<td>2.63</td>
<td>NaCl</td>
<td>6.69</td>
</tr>
<tr>
<td>Mg</td>
<td>2.59</td>
<td>MgO</td>
<td>4.29</td>
</tr>
<tr>
<td>S</td>
<td>0.52</td>
<td>SO3</td>
<td>1.31</td>
</tr>
<tr>
<td>Mn</td>
<td>0.03</td>
<td>MnO</td>
<td>0.03</td>
</tr>
</tbody>
</table>

من نتائج التحليل الكيميائي لعينة مياه على عمق 1.80 سم من الجسه الأرضية بجوار الجدار الجنوبي يظهر من (مقدمة بالمليجرام / أول) التي ينتمون من نتر (SO4, NO3, HCO3)

• أنظراً الرسم البياني الذي يوضح درجة تركيز ايونات العناصر والمعادن المكتشفة في عينات الاتحايل من مياه التربة والحجر الجيري والترية والتي يظهر فيها ارتفاع نسبة معدن البوتاسيوم والألوان.

 أهم المقترحات التي قدمت من الشركات الهندسية للعلاج والتريم:

1- على الدراسات الميدانية والتي قام بها الباحث للوضع الراهن للمجسم ذات التصميم الفني والهندسي والاشتراك، وتمام عن يده في مصر.

• كان الاقتراح يتعلق في فك الحِيحِل الخشبي داخل حجر الصلون، والذي صمم على هيئة عبب من الخشب (جردان وارضيات واستفف) ووحدة واحدة لا تُجارِم. ثم يعود تجميعها مرة تانية بعد أن يتم علاج سبب اللف والتصدع والشروخ بالجردانات وحقن التربة أو استبدالها بتركز جديدة ذات مواصفات خاصة.

ومن الدراسة أن هذا الاقتراح مرفوض بشكل ووضوح للسياق التالية:

1- عملية الفك للحِيحِل الخشبي يناسب في فقد وتلف نسبة من الاختشاب قدر 40% من جملة الاختشاب للحِيحِل الخشبي.

2- عملية إعادة تجميع وتركيب الحِيحِل الخشبي مرة ثانية نسبة نجاحها تتراوح بين 50-0% على الأكثر وذلك لعدم توافر اللدأ المبدي في هذا التخصص - والعامل المدرب ذو الخبرة العالية - ونوعية الاختشاب المستخدمة والتي تحل محل الاختشاب التي تفقد وغير ذلك.

-7-3-
هذا بالإضافة إلى أسلوب تطبيق الزخارف والمتأثر بفنون الركوك والباروك غير وارد اعادتها مرة تانية 0 مما سوف يشكل تلف وتخريب تلك الزخارف وفقدان أثراتها وقدمها وجمالها.

العلاج والترميم Conservation & Restoration

الترميم العمري Architectural restoration

1- تم التجهيز والأعداد لرفع وتحمل الهيكل الخشبي للحجر بناء الجهة بالنظرية الرواق مخصوصاً للجهة الثالثة باستخدام الجاك التي تتكون من بكر يدار بيدوية من الجهتين المقابلتين الجنوبية والبحرية باستخدام حالب وجنزير 00 وتم التحميل من النواخذ الثلاثة بالجهتين سابقين الذكر.

2- بعد أن تم رفع وتحمل الهيكل الخشبي الداخلي للحجر 00 بدأ العمل في الحفر جسمه ارضاً بطول الجدارين الجنوبي والشرقي للكشف عن الأساتذة واسطوب البناء وارتفاع منسوب المياه الأرضية وحالة التربة.

3- 00 فك لاحجار الواجهتين الجنوبي والشرقي التي ينجم تستدعي من اعلى ترتيب كل حجر حسب الجهه التي وجد فيها 0 يوجد في الترميم رقم الحجر ورقم المدكح في صورة (بنفسة مقدما).

4- تم رفع الاختشاب التي كانت مستخدمه أسفل الأساتذة بعد التأكد من تلقيها بفطر العنف الأسود ثم رفع التربة الطينية المحملة بالاملاح والمياه الراكدة وحل محلها تربة (Black rot) نتال فم (رمل) زلف ذات الاحجام الكبيرة) للحد من تفاعل الخصائص التربية ووقف المياه تحت سطحية 0.0

5- تم صب كمرة خرسانية مسلحة (سمل) 0.0 × 0.0 × 0.0 طول الجدارين وعلوهما بمادة البذور الإسود لرفع وتحمل الأساتذة والجدارين والسقف.

6- بعد مرور 00 ساعة بدأ أعداد البناء للأساتذة والجدارين بالإحجار بعد تنظيفها من الأملاح وإزاله احجار حديثة بدلاً من الاحجار التي اصابها النهر والاملاح والتي تأثرت بعامل التوجيه بحيث تحمل نفس مواصفات وخصائص الحجر القديم.

7- بعد 00 ساعة من تاريخ البناء، تم فك الراحتين التوصيات:

- يوصي البحث:

أن أغلب مشاكل الآثار الإسلامية في مدينة القاهرة الكبرى تتعرض لاهم تلف وهو ارتفاع منسوب المياه تحت سطحية أو المياه الأرضية بصفة عامة (Swelling & shrinkage).

- الحركة الميكانيكية للتربي الطينية من انكماش أو انفصال هو العامل الرئيسي للدمار للآثار والسبب للشروخ 0 وانفصال الجدران والانزلاق المعماري والمصدات 0 والانفصال بين الجدران واخره الانهيارات.
دراسات في آثار الوطن العربي

3- نسبة ارتفاع كل من كلوريد الصوديوم وكبريتات الكالسيوم تظهر على سطح وداخل نسيج الاحجار الجيرية في القاهرة وآثار القاهرة الإسلامية والقبطية بصفته خاصة.

4- يجب التفاعل مع الآثار حسب ظروفها وعدم اتخاذ قرارات العلاج والترميم المعماري بعد الدراسات الكيفية لمنع حدوث تلفيات قد تضر وتؤثر على شكل وآثار الآثار. ومحاولة العثور على هذه الظاهرة يجب استخدام أسلوب الخشبي ذات المواصفات، الأثرية التي لا يمكن إعادتها إلى سابق عدها.

5- يجب أن ينشأ التعاون بين المرموم المعماري والمرموم الدقيق والأثريين كل في تخصصه للوصول إلى أفضل الطرق والأساليب في العلاج والترميم. يجب على الجهات المعنية، والتي يهمها الأمر، استمرار الصيانة الدورية مع وضع ميزانية مالية وتفنيد لكل مشاكل وتلفيات الأثر والمباني التاريخية القديمة.

المراجع العربي والاجنبي:

1- أحمد علي العريان: المفاهيم الحديثة للفواص الديمغرافية والميكانيكية لأشكال البناء واقتصادياتها، مطبعة جريدة الصباح - القاهرة 1982 م.

2- حسام الدين عبد الحليم: تكنولوجيا صيانة وترميم المباني والثقوبيات الثقافية، الهيئة العامة للكتاب - القاهرة 1971 م.

3- حسن الباشا: تاريخ الفن عصر النهضة في أوروبا، دار النهضة العربية 1992 م.

4- حسن عبد الوهاب: العماره في عصر محمد علي باشا، دار الكتب المصرية 1941 م.

5- صالح لمي مصطفى: أسس التصميم المعماري والتخطيط الحضري في العصور الإسلامية المختلفة، منظمة العواصم والمدن الإسلامية - جدة 1990 م.

6- محمد أحمد أحمد عوض: ترميم المنشآت الآثرية، دار نهضة الشرق - جامعة القاهرة 2001 م.

7- محمد عبد الهادي محمد: دراسات علمية في ترميم الآثار الفرعونية، مكتبة زهراء الشرق 1997 م.

8- محمد ممدوح رياض: أسباب وأثر تراكم المياه على ارتفاعات بعض المباني في مصر وطرق علاجها، ندرة المباني بالعالم العربي وكيفية معالجتها، الرياض 1992 م.
نتائج التحليل والفحص (وصف اللوحات والصور):

الوحه (1) صورة (1) توضح الفرغ والأنهار في طبقات المونه والطوب بالميكروسكوب
الإلكتروني بقوة تكبير 25 X 750 K. V.

الوحه (2) صورة (2) توضح النافذ والأنهار والفراغات والأنهار داخلكي الأجهزة المستخدم في
البناء الداخلية الميكروسكوب الإلكتروني للدكان بقوة تكبير 25 X 1000 K. V.

الوحه (2) صورة (3) لثلاثة صور بالميكروسكوب الإلكتروني للدكان توضح الألواح والفراغات
والأشكال المكونة لنسب ونتيجة تعديل بقوة تكبير 25 K. V.

الوحه (4) صورة (4) تعديل معينة بقوة تكبير 25 K. V. X 1000 & X 500

- توضح منطقة شبرًا الخيمة نوع فوهات مقلن المصنوع والتي تبعث من غازات
- ملونة لمنطقة الأثر.
دراسات في آثار الوطن العربي

2- صورة توضح درجة الالتلاف التي أصابها مبانى حجرة الصالون وإزالة مياه الرش والشمع والمحاليل الملحية بالخاصة الشعرية.

لوحة (5) بها ثلاثة صور الصورة 1، للا مجال الجنوبي للقصر أثناء الصلب والنعمان والتراث

صورة (3) توضح حالة باب حجرة الصالون وتأثير مياه الرش والشمع والمحاليل الملحية على الحواتج والجدران.

لوحة (6) بها صورتين.

1- واجهة القصر الجنوبية والمداخل الجنوبي

2- سقف حجرة الصالون وما به من زخارف ونقوش متأثرة بفنون الركوك والباروك.

لوحة (7) بها ثلاثة صور توضح ارتفاع نسبة المياه تحت سطحية المحاليل الملحية بالجدران الجنوبية، والشرقي وظهور الشروخ العميقة والانهياب والتفاعل بالجدران سابقاً الذكر.

لوحة (8) نتائج تحليل لعينات حجر جيري وتربة باستخدام سيود الإشعاع السيني، وارتفاع نسبة كلووريد الصوديوم وكبيرة نتائج الماء السالني مع معادن نسيج الحجر.

الأشكال:

شكل (1) بوضوح مسقط أفقى للقصر محمد على.

شكل (2) يوضح المسمقلات الإقلي لحجرة الصالون ومواد البحث نقاً عن صالح موعدي مصطفى.

شكل (3) يوضح تصميم إنشاء الحجرة من عمل الباحث.

- شكل (4) يوضح تصميم نسيج الطين في التربة الطينية.

- شكل (5) يوضح قيمة ارتفاع في تربة أسفل حجرة الصالون موضوع البحث.

شكل (6) يوضح الرسم البياني لعينة حجر جيري باستخدام حديد الإشعاع السيني.

شكل (7) رسم بياني لعينة تربة باستخدام حديد الإشعاع السيني.

شكل (8) يوضح العلاقة بين قطر الحبيبات بالمليمتين والناقص المنوي بالوزن للحبيبات.

نتائج الدراسة والتحليل والفحص:

1- من نتائج التحليل الكيميائي لعينة المياه المأخوذة من التربة يتبين من الرسم البياني رقم (1) درجة تركيز أيونات العناصر المكتشفة في العينة المختبرة من المياه الأرضية.

2- رقم بياني رقم (2) يوضح نتائج التحليل لعينة حجر جيري من الواجهة الجنوبية بحجرة الصالون ويظهر ارتفاع نسبة المعادن في نسيج الحجر بالعينة.

3- رقم بياني رقم (3) لعينة تربة أسفل حجرة الصالون توضح نسبة عناصر المركبات التي يتكون منها نسيج التربة الطينية بالتربة.

٧٠٦
دراسة في أثار الوطن العربي

1. مياه

2. معدن

3. تربة

رسم يبايع لنتائج العاميل
دراسات في آثار الوطن العربي ١٠١
دراسات في آثار الوطن العربي

James R. Chilton
Preservation of Historic Adobe Structures - Asian Art: Institute I
دراسة في آثار الوطن العربي

صورة رقم (4)

بالليكروسكوب الإلكتروني الماسي لسطح عينة من أحجار الواجهة الجنوبية بقوة تكبير 50X.

ويظهر بالصورة بلورات أملاح الكلوريدات والانهيار الذي حدث بسبب الطينية.
دراسات في أثار الوطن العربي